Search results for "non-smooth geometry"

showing 2 items of 2 documents

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

2013

We show that in any infinitesimally Hilbertian CD* (K,N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD* (0,N)-spaces.

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsSpace (mathematics)01 natural sciencesMeasure (mathematics)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric Geometry0101 mathematics[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]tangent spaces; non-smooth geometryRicci curvatureMathematics51F99-53B99non-smooth geometrySequenceEuclidean spaceApplied MathematicsHilbertian spaces010102 general mathematicstangent spacesTangentMetric Geometry (math.MG)Euclidean spacesDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]weak tangentsBounded functionSplitting theorem010307 mathematical physics
researchProduct

Pestov identities and X-ray tomography on manifolds of low regularity

2021

We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.

Mathematics - Differential Geometrynon-smooth geometrygeodesic X-ray tomographyinverse problems44A12 53C22 53C65 58J32Pestov identityinversio-ongelmatdifferentiaaligeometriaRiemannin monistotMathematics - Analysis of PDEsDifferential Geometry (math.DG)tomografiaintegraalilaskentaFOS: MathematicsMathematics::Differential Geometryintegral geometryAnalysis of PDEs (math.AP)
researchProduct